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On Optimum Combining of M -PSK Signals
With Unequal-Power Interferers and Noise
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Abstract—In this letter, we derive a closed-form symbol-error
probability expression for adaptive antenna array with optimum
(or, equivalently, linear minimum mean-square error) combining.
We consider coherent detection of -ary phase-shift keying
signals in the presence of unequal-power interferers and thermal
noise. The analysis is based on our new results on the eigenvalues
distribution of central Wishart matrices with correlation.

Index Terms—Adaptive arrays, antenna diversity, cochannel in-
terference, eigenvalues distribution, minimum mean-square error
(MMSE) receivers, optimum combining (OC), Wishart matrices.

I. INTRODUCTION

ADAPTIVE arrays using optimum combining (OC) can sig-
nificantly improve the performance of wireless communi-

cation systems by weighting and combining the received signals
to reduce fading effects and suppress interference [1]. The per-
formance evaluation of OC is known to be difficult, especially
if fading is taken into account for all the interfering signals, in
addition to the desired signal [2]–[8].

Bit-error probability (BEP) expressions for OC in the pres-
ence of the single interferer were derived [1], [2], [9]. In [1],
fading of the interferer was not taken into account explicitly,
whereas [2] and [9] consider the case in which both the desired
signal and a single interferer are subject to Rayleigh fading.

For the case of multiple equal-power interferers (EPI) in
Rayleigh fading channels, upper bounds on the symbol-error
probability (SEP) have been derived in [3]–[5], and closed-form
BEP and SEP expressions are obtained more recently in [10]
and [11] for binary phase-shift keying (BPSK) and [6]–[8] for

-ary phase-shift keying ( -PSK). With multiple interferers
of arbitrary power, Monte Carlo simulation has been used to
determine the BEP [1], and upper bounds on the BEP were
derived [12], [13]. However, analytical results are not known
for the OC of signals in the presence of multiple, uncorrelated,
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unequal-power interferers (UPI) as well as thermal noise in a
Rayleigh fading environment.

In this letter, we derive a concise SEP expression for adaptive
antenna array with optimum [or, equivalently, linear minimum
mean-square error (MMSE)] combining. We consider coherent
detection of -PSK signals in the presence of multiple, uncor-
related UPI, as well as thermal noise in a flat Rayleigh fading
environment. The analysis is based on our recent results on the
eigenvalues distribution of complex Wishart matrices with cor-
relation [7], [14].

II. SYSTEM DESCRIPTION

The received signal at the -element array output consists
of the desired signal, interfering signals, and thermal noise.
After matched filtering and sampling at the symbol rate, the
array output vector at time can be written as [4]

(1)

with the interference-plus-noise term

(2)

where and are the mean (over fading) energies
of the desired and th interfering signal, respectively,

and
are the desired and th interference-normalized propagation
vectors, respectively, and are the desired and
interfering data samples, respectively, and represents
the additive noise.1 Without loss of generality, we index the
interferers such that , for all .

We model and as multivariate complex-valued
Gaussian vectors having and

, where is the identity matrix.
The interfering data samples, for , can
be modeled as uncorrelated zero-mean random variables,
and without loss of generality, and are assumed
to have unit variance. The additive noise is modeled as a
white Gaussian random vector with independent and iden-
tically distributed (i.i.d.) elements with and

, where is the two-sided thermal
noise power spectral density per antenna element.

III. DERIVATION OF THE SEP

The signal-to-interference-plus-noise ratio (SINR) at the
output of the -element array with OC is given by [1]

(3)

1Throughout the letter, (�) is the transposition operator, and (�) denotes
conjugation and transposition.
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where denotes the short-term covariance matrix of the distur-
bance , conditioned on all interference propagation vec-
tors. It is important to remark that and, consequently, vary
at the fading rate, which is assumed to be much slower than the
symbol rate.

Using the approach similar to that of [3] and [8], it can be
shown that

(4)

where are the eigenvalues of the
random matrix . The matrix is
composed of normalized interference propagation vectors as
columns

(5)

and the matrix takes into ac-
count the interferers’ power levels. The vector

has the same distribution as , since repre-
sents a unitary transformation. Note that even the eigenvalues
vary at the fading rate.

Assuming , it is simple to show that the SEP can be
written as [8]

(6)

where is the conditional SEP, conditioned on a given

realization of , and is the joint probability density
function (pdf) of the nonzero ordered eigenvalues of . The
expression (6) can be cumbersome to evaluate, as it requires the
evaluation of nested -fold integrals. However, we show how
this expression can be simplified to a concise expression, given
in the following theorem.

Theorem 1: The exact SEP expression for coherent detection
of -PSK with OC is

(7)

where ,

(8)

and

(9)

where denotes the determinant of .
The constant is given by

(10)

with

(11)

(12)

and is a Vandermonde matrix. The
elements of the matrix in (7)
are given by

(13)

where is the incomplete Gamma function [15, p. 949,
eq. (8.350)].

Proof: For coherent detection of -PSK signals, the con-
ditional SEP is given by [3], [5], [8]

(14)

where is defined in (8). The expression for the joint pdf of
the eigenvalues in [8] is for the case of EPI, and cannot be used
here to analyze the case of interest, namely UPI.

Since , it is possible to show that the
matrix is a full rank (with probability 1)
central Wishart matrix, whose eigenvalues are the same as the
nonzero eigenvalues of . The joint pdf of the (real) ordered
eigenvalues of has been derived in
[16] as

(15)

In (15), is a hypergeometric function of Hermitian
matrix arguments, whose definition is given in [16, eq. (88)]
in terms of zonal polynomials. Since these are quite difficult to
manage, (15) is not of practical interest.
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Fortunately, a more tractable expression for the joint pdf of
the eigenvalues of the central Wishart matrix , with an arbi-
trary correlation matrix , was recently obtained in [14] as

(16)

where are the ordered eigenvalues
of , and was defined previously in (9). Note that for the
special case of our interest, .

Now, substituting (14) and (16) into (6), the expression for
the SEP becomes

(17)

This expression can be further simplified using the following
identity proved in [14]. Given two arbitrary matrices

and with th elements and , and an
arbitrary function , the following identity holds:

(18)

where the multiple integral is over the domain
and .

Using (18), we easily obtain (7), with the th elements of the
matrix given by

(19)

with

(20)

Finally, by solving (19), we obtain (13). This completes the
proof of the theorem.

Thus, Theorem 1 provides a concise expression for the effi-
cient performance evaluation for OC of signals in the presence
of multiple, uncorrelated UPI and thermal noise in Rayleigh
fading.

As an example, we provide in Fig. 1 the SEP for quaternary
phase-shift keying (QPSK) with 3 and 5, . The
signal-to-noise ratio (SNR) is defined as , the signal-to-
interference ratio (SIR) as , and .
The figure shows a comparison between the EPI and UPI, both

Fig. 1. SEP as a function of SNR for N = 3 and 5, N = 3, SIR = 5 dB,
and QPSK; comparison between EPI and UPI.

cases with the same value of SIR dB. It can be seen that the
EPI result in a higher SEP, regardless of the number of antenna
elements considered.

IV. CONCLUSIONS

We derived a concise closed-form expression for efficient
evaluation of the SEP for coherent detection of -PSK using
OC in the presence of multiple, uncorrelated, unequal-power
cochannel interferers and thermal noise in a flat Rayleigh fading
environment. The analysis is based on our new results on the
eigenvalues distribution of central Wishart matrices with corre-
lation [14].
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